Connections between van der Corput's Difference Theorem and the Ergodic Hierarchy of Mixing Properties.

Sohail Farhangi

April 28, 2021

Definition: A sequence $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is uniformly distributed if for any open interval $(a,b) \subseteq [0,1]$ we have

$$\lim_{N \to \infty} \frac{1}{N} \Big| \{ 1 \le n \le N \mid x_n \in (a, b) \} \Big| = b - a.$$

Theorem(van der Corput): If $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is such that $(x_{n+h} - x_n \pmod{1})_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself uniformly distributed.

Hilbertian van der Corput Difference Theorem

vdC1: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle = 0,$$

for every $h \in \mathbb{N}$, then

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} x_n|| = 0.$$

Slide 4/33

Theorem(Poincaré): For any measure preserving system (X, \mathscr{B}, μ, T) , and any $A \in \mathscr{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A) > 0.$$

Theorem(Furstenberg-Sárközy): For any measure preserving system (X, \mathscr{B}, μ, T) , and any $A \in \mathscr{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n^2}A) > 0.$$

Theorem(Furstenberg): For any measure preserving system (X, \mathscr{B}, μ, T) , any $\ell \in \mathbb{N}$, and any $A \in \mathscr{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-\ell n}A) > 0.$$

A Hilbertian van der Corput Difference Theorem Variant

vdC2: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h \to \infty} \left| \frac{\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} x_n|| = 0.$$

Another Hilbertian van der Corput Difference Theorem Variant

vdC3: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \left| \frac{\lim_{N \to \infty} 1}{\lim_{N \to \infty} N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} x_n|| = 0.$$

Question: Why is this the variant of van der Corput's Difference Theorem that is used in the proof of Furstenberg's multiple recurrence Theorem?

The Ergodic Hierarchy of Mixing

Definition: Let $\mathcal{X} = (X, \mathscr{B}, \mu, T)$ be a measure preserving system. If for every $A, B \in \mathscr{B}$ we have

- $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is ergodic.
- $\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \frac{1}{N} \lim_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}B) \mu(A)\mu(B) \right| = 0, \text{ then } \mathcal{X} \text{ is weakly mixing.}$
- $\lim_{n \to \infty} \mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is strongly mixing.

If there exists a σ -algebra \mathscr{A} such that $\{T^{-n}A \mid A \in \mathscr{A}, n \geq 0\}$ generates \mathscr{B} , and for every $A, B \in \mathscr{A}$ and $n \geq 1$ we have $\mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is Bernoulli.

Symmetry and Mixing

Theorem: Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A \in \mathcal{B}$ we have

•
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A) = \mu(A)^2$$
, then \mathcal{X} is ergodic.

•
$$\lim_{H\to\infty} \frac{1}{H} \sum_{h=1}^{H} \overline{\lim_{N\to\infty}} \left| \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A) - \mu(A)^2 \right| = 0, \text{ then } \mathcal{X} \text{ is weakly mixing.}$$

• $\lim_{n \to \infty} \mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is strongly mixing.

Mixing van der Corput Theorems

Theorem(A. Tserunyan): Let \mathscr{P} be a nice filter. If $(e_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a nice bounded sequence, then

$$\mathscr{P} - \lim_{h \to \infty} \mathscr{P} - \lim_{n \to \infty} \langle e_n, e_{n+h} \rangle = 0 \Rightarrow \mathscr{P} - \lim_{n \to \infty} \langle f, e_n \rangle = 0 \ \forall f \in \mathcal{H}.$$

Remark: To see the resemblance with our previous van der Corput Theorems, we first conisder a special case in which $e_n = U^n e_1$, where $U : \mathcal{H} \to \mathcal{H}$ is a unitary operator. In this case, we see that

$$\mathcal{P} - \lim_{h \to \infty} \mathcal{P} - \lim_{n \to \infty} \langle e_n, e_{n+h} \rangle = \mathcal{P} - \lim_{h \to \infty} \mathcal{P} - \lim_{n \to \infty} \langle U^n e_1, U^{n+h} e_1 \rangle$$
$$= \mathcal{P} - \lim_{h \to \infty} \mathcal{P} - \lim_{n \to \infty} \langle e_1, U^h e_1 \rangle = \mathcal{P} - \lim_{h \to \infty} \langle e_1, U^h e_1 \rangle$$

Hilbertian (Cesàro) van der Corput Difference Theorems Revisited

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequences which satisfies any of (i), (ii), and (iii).

(i)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle = 0$$
 for every $h \in \mathbb{N}$.

(ii)
$$\lim_{h \to \infty} \overline{\lim_{N \to \infty}} \left| \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right| = 0.$$

(iii)
$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \frac{1}{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} \langle x_{n+h}, x_n \rangle \right| = 0.$$

Then

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} x_n|| = 0.$$

Bernoulli-Mixing van der Corput's Difference Theorem

MvdC1: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle = 0,$$

for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is a **nearly orthogonal sequence**.

Remark: One way to understand this result is to consider a new Hilbert space \mathcal{H}' , whose elements are sequences $(x_n)_{n=1}^{\infty}$ of vectors coming from \mathcal{H} . Intuitively, we may let

$$\langle (x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, y_n \rangle$$

be the inner product on \mathcal{H}' .

The hypothesis that

$$0 = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle = \langle U^h(x_n)_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'},$$

 $(cf.\mu(A\cap T^{-n}B)=\mu(A)\mu(B)\;\forall\;A,B\in\mathscr{A},n\geq 1)$

for every $h \in \mathbb{N}$ verifies that $\{U^h(x_n)_{n=1}^\infty\}_{h=0}^\infty$ is an orthonormal set in \mathcal{H}' , where U denotes the left shift operator. It follows that

$$\sum_{h=0}^{\infty} |\langle U^{h}(x_{n})_{n=1}^{\infty}, (y_{n})_{n=1}^{\infty} \rangle_{\mathcal{H}'}|^{2} \le ||(y_{n})_{n=1}^{\infty}||_{\mathcal{H}'}^{2} \forall (y_{n})_{n=1}^{\infty} \in \mathcal{H}'$$

Corollary: For any totally ergodic measure preserving system (X, \mathcal{B}, μ, T) , any rigid μ -preserving transformation $S : X \to X$, and any $A, B \in \mathcal{B}$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(S^{-n}A \cap T^{-n^2}B) = \mu(A)\mu(B).$$

Strong Mixing van der Corput's Difference Theorem

MvdC2: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h \to \infty} \left| \frac{\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then $(x_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence.

Remark: Let \mathcal{H}' , $\langle \cdot, \cdot, \rangle_{\mathcal{H}'}$, and U be as before. The given hypothesis implies

$$0 = \lim_{h \to \infty} \langle U^h(x_n)_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'},$$

(cf.
$$\lim_{h \to \infty} \mu(A \cap T^{-n}A) = \mu(A)^2 \ \forall \ A \in \mathscr{B}$$
)

verifies that $\{U^h(x_n)_{n=1}^\infty\}_{h=0}^\infty$ is a strongly mixing sequence in \mathcal{H}' . It follows that

$$\lim_{h \to \infty} \langle U^h(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'} = 0 \ \forall \ (y_n)_{n=1}^{\infty} \in \mathcal{H}'.$$

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly strongly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a rigid sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a rigid sequence. We have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, r_n \rangle = 0$$

and

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} c_n x_n = 0,$$

with convergence taking place in the weak topology.

Weak Mixing van der Corput's Difference Theorem

MvdC3: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \left| \frac{\lim_{N \to \infty} 1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then $(x_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence.

Remark: Let \mathcal{H}' , $\langle \cdot, \cdot, \rangle_{\mathcal{H}'}$, and U be as before. The given hypothesis implies

$$0 = \lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} |\langle U^{h}(x_{n})_{n=1}^{\infty}, (x_{n})_{n=1}^{\infty} \rangle_{\mathcal{H}'}|,$$

(cf. $\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} |\mu(A \cap T^{-n}A) - \mu(A)^{2}| = 0 \ \forall \ A \in \mathscr{B}$)

verifies that $\{U^h(x_n)_{n=1}^\infty\}_{h=0}^\infty$ is a weakly mixing sequence in \mathcal{H}' . It follows that

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} |\langle U^h(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'}| = 0 \ \forall \ (y_n)_{n=1}^{\infty} \in \mathcal{H}'.$$

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly weakly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a compact sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a compact sequence. We have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, r_n \rangle = 0$$

and

$$\lim_{N \to \infty} || \frac{1}{N} \sum_{n=1}^{N} c_n x_n || = 0.$$

Corollary: For any measure preserving system (X, \mathscr{B}, μ, T) , any $\ell \in \mathbb{N}$, and any compact μ -preserving transformation $S : X \to X$, there exists $n \in \mathbb{N}$ for which

$$\mu(S^{-n}A \cap T^{-n}A \cap T^{-2n}A \cap \cdot \cap T^{-\ell n}A) > 0$$

Ergodic van der Corput's Difference Theorem

MvdC4: If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H \to \infty} \left| \frac{1}{NH} \sum_{\substack{1 \le h \le H \\ 1 \le n \le N}} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then $(x_n)_{n=1}^{\infty}$ is a **completely ergodic sequence**.

Remark: Let \mathcal{H}' , $\langle \cdot, \cdot, \rangle_{\mathcal{H}'}$, and U be as before. The given hypothesis implies

$$0 = \lim_{h \to \infty} \langle U^h(x_n)_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'},$$

(cf.
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A) = \mu(A)^2 \ \forall \ A \in \mathscr{B})$$

verifies that $\{U^h(x_n)_{n=1}^\infty\}_{h=0}^\infty$ is a ergodic sequence in \mathcal{H}' . It follows that

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \langle U^h(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'} = 0 \ \forall \ (y_n)_{n=1}^{\infty} \in \mathcal{H}'.$$

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a completely ergodic sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a invariant sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a invariant sequence. We have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, r_n \rangle = 0$$

and

$$\lim_{N \to \infty} || \frac{1}{N} \sum_{n=1}^{N} c_n x_n || = 0.$$

Mixing and Uniform Distribution

Definition: Let us recall that \mathbb{C} is a Hilbert space when equipped with the inner product $\langle c_1, c_2 \rangle = c_1 \overline{c_2}$. By abuse of notation, let $C_0(\mathbb{T})$ denote the set of continuous complex valued functions f on \mathbb{T} with $\int_{\mathbb{T}} f dm = 0$. Let $(x_n)_{n=1}^{\infty} \subseteq \mathbb{T}^d$ be a sequence.

- (1) $(x_n)_{n=1}^{\infty}$ is a **e-sequence** if for every $f \in \mathbb{T}$, $f(x_n)_{n=1}^{\infty}$ is a completely ergodic sequence.
- (2) $(x_n)_{n=1}^{\infty}$ is a **wm-sequence** if for every $f \in C_0(\mathbb{T}), (f(x_n))_{n=1}^{\infty}$ is a nearly weakly mixing sequence.
- (3) $(x_n)_{n=1}^{\infty}$ is a **mm-sequence** if for every $f \in C_0(\mathbb{T}), (f(x_n))_{n=1}^{\infty}$ is a nearly mildly mixing sequence.
- (4) $(x_n)_{n=1}^{\infty}$ is a **sm-sequence** if for every $f \in C_0(\mathbb{T})$, $(f(x_n))_{n=1}^{\infty}$ is a nearly strongly mixing sequence.
- (5) $(x_n)_{n=1}^{\infty}$ is a **o-sequence** if for every $f \in C_0(\mathbb{T})$, $(f(x_n))_{n=1}^{\infty}$ is a nearly orthogonal sequence.

Notions Complementary to Mixing

Let $A := (n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ have positive lower natural density.

- (1) A is **invariant** if $d(A \cap (A 1)) = 0$.
- (2) A is **compact** if $(\mathbb{1}_A(n))_{n=1}^{\infty}$ is a compact sequence of complex numbers.
- (3) A is **rigid** if $(\mathbb{1}_A(n))_{n=1}^{\infty}$ is a rigid sequence of complex numbers.
- (4) A has **zero-entropy** if $(\mathbb{1}_A(n))_{n=1}^{\infty}$ is a zero-entropy sequence of complex numbers.

A Consequence of the Pointwise Ergodic Theorem

Definition: $(x_n)_{n=1}^{\infty} \subseteq [0,1]^d$ is **totally uniformly distributed** if for any $a, b \in \mathbb{N}$ the sequence $(x_{an+b})_{n=1}^{\infty}$ is totally uniformly distributed.

Fact: If $\mathcal{X} := ([0,1]^d, \mathscr{B}, m, T)$ is an ergodic m.p.s. then for Lebesgue a.e. $x \in [0,1]^d$, the sequence $(T^n x)_{n=1}^{\infty}$ is uniformly distributed. If \mathcal{X} is totally ergodic, then for Lebesgue a.e. $x \in [0,1]^d$, the sequence $(T^n x)_{n=1}^{\infty}$ is totally uniformly distributed.

Remark: The points $x \in [0, 1]$ for which the fact holds are precisely that x that are generic for T.

The Consequence of Higher Order Pointwise Ergodic Theorems

Theorem: Let $\mathcal{X} := ([0, 1]^d, \mathscr{B}, m, T)$ be an ergodic m.p.s. and let $x \in [0, 1]^d$ be a generic point for T.

(1) If \mathcal{X} is weakly mixing, then $(T^n x)_{n=1}^{\infty}$ is a wm-sequence.

(1.5) If \mathcal{X} is mildly mixing, then $(T^n x)_{n=1}^{\infty}$ is a mm-sequence.

- (2) If \mathcal{X} is strongly mixing, then $(T^n x)_{n=1}^{\infty}$ is a sm-sequence.
- (3) $(T^n x)_{n=1}^{\infty}$ is **not** an o-sequence.

Discrepancy

Given a sequence $(x_n)_{n=1}^N \subseteq [0,1]^d$, the **discrepancy** of $(x_n)_{n=1}^\infty \subseteq [0,1]^d$ is denoted by $D_N((x_n)_{n=1}^N)$ and given by

$$D_N((x_n)_{n=1}^N) = \sup_{B \in \mathcal{R}} \left| \frac{1}{N} | \{ 1 \le n \le N \mid x_n \in B \} | -m^d(B) \right|, \quad (1)$$

where \mathcal{R} denotes the collection of all rectangular prisms contained in $[0, 1]^d$. For an infinite sequence $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^d$, we let

$$\overline{D}((x_n)_{n=1}^{\infty}) = \overline{\lim_{N \to \infty}} D_N((x_n)_{n=1}^N), \text{ and we let}$$
(2)

$$D((x_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = \lim_{q \to \infty} D_{N_q}((x_n)_{n=1}^{N_q}),$$
(3)

provided that the limit exists.

Ergodic van der Corput

Theorem: $\{x_{(n,m)}\}_{(n,m)\in\mathbb{N}^2} \subseteq \mathbb{T}$ is uniformly distributed if and only if for every $k \in \mathbb{N}$, we have

$$\lim_{K \to \infty} \sup_{N,M \ge K} \left| \frac{1}{NM} \sum_{\substack{1 \le n \le N \\ 1 \le m \le M}} e^{2\pi i k x_{n,m}} \right| = 0.$$
(4)

Theorem: If $(x_n)_{n=1}^{\infty} \subseteq \mathbb{T}$ is such that $(x_{n+h} - x_n)_{(n,h) \in \mathbb{N}^2}$ is uniformly distributed, then $(x_n)_{n=1}^{\infty}$ is also uniformly distributed.

'Theorem': If $(x_n)_{n=1}^{\infty} \subseteq \mathbb{T}$ is such that $(x_{n+h} - x_n)_{(n,h) \in \mathbb{N}^2}$ is uniformly distributed, then $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed for any invariant sequence $(n_k)_{k=1}^{\infty}$.

Weakly Mixing van der Corput

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ be a sequence for which

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} \overline{D}((x_{n+h} - x_n)_{n=1}^{\infty}) = 0.$$
 (5)

Then $(x_n)_{n=1}^{\infty}$ is a wm-sequence.

Theorem: $(x_n)_{n=1}^{\infty} \subseteq [0,1]^d$ is a wm-sequence if and only if $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed whenever $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ is compact.

Mildly Mixing van der Corput

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ be a sequence for which

$$IP^* - \lim_{h \to \infty} \overline{D}((x_{n+h} - x_n)_{n=1}^{\infty}) = 0.$$
 (6)

Then $(x_n)_{n=1}^{\infty}$ is a mm-sequence.

'Theorem': $(x_n)_{n=1}^{\infty} \subseteq [0,1]^d$ is a mm-sequence if and only if $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed whenever $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ is rigid.

Strongly Mixing van der Corput

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ be a sequence for which

$$\lim_{h \to \infty} \overline{D}((x_{n+h} - x_n)_{n=1}^{\infty}) = 0.$$
(7)

Then $(x_n)_{n=1}^{\infty}$ is a sm-sequence.

Nearly Orthogonal van der Corput and A Counter Example

Theorem: $(x_n)_{n=1}^{\infty} \subseteq [0,1]^d$ is an *o*-sequence if and only if for each $h \in \mathbb{N}$ $(x_n, x_{n+h})_{n=1}^{\infty} \subseteq [0,1]^{2d}$ is uniformly distributed.

Example: Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be artbirary and consider the sequence $(x_n)_{n=1}^{\infty}$ defined by $x_n = n^2 \alpha \pmod{1}$ if n is odd and $x_n = 2(n-1)^2 \alpha \pmod{1}$ if n is even.

- (1) $(x_n)_{n=1}^{\infty}$ is **not** an o-sequence.
- (2) For each $h \in \mathbb{N}$ the sequence $(x_{n+h} x_n)_{n=1}^{\infty}$ is uniformly distributed.

A Conjecture

Conjecture: If $(x_n)_{n=1}^{\infty} \subseteq [0,1]^d$ is such that $(x_{n+h} - x_n)_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed for any zero-entropy sequence $(n_k)_{k=1}^{\infty}$.

If and only If Weakly Mixing van der Corput

Theorem: For $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^{d_1}$ the following are equivalent: (1) $(x_n)_{n=1}^{\infty}$ is a wm-sequence.

(2) For any uniformly distributed $(y_n)_{n=1}^{\infty} \subseteq [0,1]^{d_2}$ and $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, y_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} D((x_n, y_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
(8)

(3) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} D((x_n, x_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
(9)

(4) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ that makes $(\{(x_{n+h} - x_n)_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty}))$ a permissible pair, we have

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} D((x_{n+h} - x_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
(10)

If and only If Mildly Mixing van der Corput

'Theorem': For $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^{d_1}$ the following are equivalent: (1) $(x_n)_{n=1}^{\infty}$ is a mm-sequence.

(2) For any uniformly distributed $(y_n)_{n=1}^{\infty} \subseteq [0,1]^{d_2}$ and $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, y_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$IP^* - \lim_{h \to \infty} D((x_n, y_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
 (11)

(3) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$IP^* - \lim_{h \to \infty} D((x_n, x_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
 (12)

(4) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ that makes $((\{(x_{n+h} - x_n)_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty}))$ a permissible pair, we have

$$IP^* - \lim_{h \to \infty} D((x_{n+h} - x_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
 (13)

If and only If Strongly Mixing van der Corput

Theorem: For $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^{d_1}$ the following are equivalent: (1) $(x_n)_{n=1}^{\infty}$ is a sm-sequence.

(2) For any uniformly distributed $(y_n)_{n=1}^{\infty} \subseteq [0,1]^{d_2}$ and $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, y_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$\lim_{h \to \infty} D((x_n, y_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
(14)

(3) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$\lim_{h \to \infty} D((x_n, x_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
(15)

(4) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ that makes $((\{(x_{n+h} - x_n)_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty}))$ a permissible pair, we have

$$\lim_{h \to \infty} D((x_{n+h} - x_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0.$$
(16)