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The Classical van der Corput Difference Theorem

Definition: A sequence (xn)∞n=1 ⊆ [0, 1] is uniformly distributed if for any
open interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1

N

∣∣∣{1 ≤ n ≤ N | xn ∈ (a, b)}
∣∣∣ = b− a.

Theorem(van der Corput): If (xn)∞n=1 ⊆ [0, 1] is such that (xn+h − xn
(mod 1))∞n=1 is uniformly distributed for every h ∈ N, then (xn)∞n=1 is itself
uniformly distributed.
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Hilbertian van der Corput Difference Theorem

vdC1: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
N→∞

1

N

N∑
n=1

〈xn+h, xn〉 = 0,

for every h ∈ N, then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0.
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Theorem(Poincaré): For any measure preserving system (X,B, µ, T ), and
any A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0.

Theorem(Furstenberg-Sárközy): For any measure preserving system (X,B, µ, T ),
and any A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−n2A) > 0.

Theorem(Furstenberg): For any measure preserving system (X,B, µ, T ),
any ` ∈ N, and any A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−`nA) > 0.
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A Hilbertian van der Corput Difference Theorem
Variant

vdC2: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
h→∞

∣∣∣∣∣ lim
N→∞

1

N

N∑
n=1

〈xn+h, xn〉

∣∣∣∣∣ = 0,

then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0.
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Another Hilbertian van der Corput Difference
Theorem Variant

vdC3: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

1

H

H∑
h=1

∣∣∣∣∣ lim
N→∞

1

N

N∑
n=1

〈xn+h, xn〉

∣∣∣∣∣ = 0,

then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0.

Question: Why is this the variant of van der Corput’s Difference Theorem
that is used in the proof of Furstenberg’s multiple recurrence Theorem?
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The Ergodic Hierarchy of Mixing

Definition: Let X = (X,B, µ, T ) be a measure preserving system. If for
every A,B ∈ B we have

� lim
N→∞

1
N

N∑
n=1

µ(A ∩ T−nB) = µ(A)µ(B), then X is ergodic.

� lim
H→∞

1
H

H∑
h=1

lim
N→∞

| 1
N

N∑
n=1

µ(A ∩ T−nB)− µ(A)µ(B)| = 0, thenX is weakly

mixing.

� lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B), then X is strongly mixing.

If there exists a σ-algebra A such that {T−nA | A ∈ A , n ≥ 0} generates B,
and for every A,B ∈ A and n ≥ 1 we have µ(A ∩ T−nB) = µ(A)µ(B), then
X is Bernoulli.
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Symmetry and Mixing

Theorem: Let X = (X,B, µ, T ) be a measure preserving system. If for
every A ∈ B we have

� lim
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA) = µ(A)2, then X is ergodic.

� lim
H→∞

1
H

H∑
h=1

lim
N→∞

| 1
N

N∑
n=1

µ(A ∩ T−nA)− µ(A)2| = 0, then X is weakly

mixing.

� lim
n→∞

µ(A ∩ T−nA) = µ(A)2, then X is strongly mixing.

McGill University Descriptive Dynamics and Combinatorics Seminar



Sohail Farhangi Slide 9/33

Mixing van der Corput Theorems

Theorem(A. Tserunyan): Let P be a nice filter. If (en)∞n=1 ⊆ H is a nice
bounded sequence, then

P − lim
h→∞

P − lim
n→∞
〈en, en+h〉 = 0⇒P − lim

n→∞
〈f, en〉 = 0 ∀f ∈ H.

Remark: To see the resemblance with our previous van der Corput Theorems,
we first conisder a special case in which en = Une1, where U : H → H is a
unitary operator. In this case, we see that

P − lim
h→∞

P − lim
n→∞
〈en, en+h〉 = P − lim

h→∞
P − lim

n→∞
〈Une1, U

n+he1〉

= P − lim
h→∞

P − lim
n→∞
〈e1, Uhe1〉 = P − lim

h→∞
〈e1, Uhe1〉
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Hilbertian (Cesàro) van der Corput Difference
Theorems Revisited

Theorem: Let (xn)∞n=1 ⊆ H be a bounded sequences which satisfies any of
(i), (ii), and (iii).

(i) lim
N→∞

1

N

N∑
n=1

〈xn+h, xn〉 = 0 for every h ∈ N.

(ii) lim
h→∞

lim
N→∞

| 1
N

N∑
n=1

〈xn+h, xn〉| = 0.

(iii) lim
H→∞

1

H

H∑
h=1

lim
N→∞

| 1
N

N∑
n=1

〈xn+h, xn〉| = 0.

Then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0.
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Bernoulli-Mixing van der Corput’s Difference
Theorem

MvdC1: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
N→∞

1

N

∞∑
n=1

〈xn+h, xn〉 = 0,

for every h ∈ N, then (xn)∞n=1 is a nearly orthogonal sequence.

Remark: One way to understand this result is to consider a new Hilbert
space H′, whose elements are sequences (xn)∞n=1 of vectors coming from H.
Intuitively, we may let

〈(xn)∞n=1, (yn)∞n=1〉H′= lim
N→∞

1

N

N∑
n=1

〈xn, yn〉

be the inner product on H′.
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The hypothesis that

0 = lim
N→∞

1

N

∞∑
n=1

〈xn+h, xn〉 = 〈Uh(xn)∞n=1, (xn)∞n=1〉H′,

(cf.µ(A ∩ T−nB) = µ(A)µ(B) ∀ A,B ∈ A , n ≥ 1)

for every h ∈ N verifies that {Uh(xn)∞n=1}∞h=0 is an orthonormal set inH′, where
U denotes the left shift operator. It follows that

∞∑
h=0

|〈Uh(xn)∞n=1, (yn)∞n=1〉H′|2 ≤ ||(yn)∞n=1||2H′ ∀ (yn)∞n=1 ∈ H′

Corollary: For any totally ergodic measure preserving system (X,B, µ, T ),
any rigid µ-preserving transformation S : X → X , and any A,B ∈ B, we
have

lim
N→∞

1

N

N∑
n=1

µ(S−nA ∩ T−n2B) = µ(A)µ(B).
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Strong Mixing van der Corput’s Difference Theorem

MvdC2: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
h→∞

∣∣∣∣∣ lim
N→∞

1

N

∞∑
n=1

〈xn+h, xn〉

∣∣∣∣∣ = 0,

then (xn)∞n=1 is a nearly strongly mixing sequence.

Remark: Let H′, 〈·, ·, 〉H′, and U be as before. The given hypothesis implies

0 = lim
h→∞
〈Uh(xn)∞n=1, (xn)∞n=1〉H′,

(cf. lim
h→∞

µ(A ∩ T−nA) = µ(A)2 ∀ A ∈ B)

verifies that {Uh(xn)∞n=1}∞h=0 is a strongly mixing sequence in H′. It follows
that

lim
h→∞
〈Uh(xn)∞n=1, (yn)∞n=1〉H′ = 0 ∀ (yn)∞n=1 ∈ H′.
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Theorem: Let (xn)∞n=1 ⊆ H be a nearly strongly mixing sequence, (rn)∞n=1 ⊆
H a rigid sequence, and (cn)∞n=1 ⊆ C a rigid sequence. We have

lim
N→∞

1

N

N∑
n=1

〈xn, rn〉 = 0

and

lim
N→∞

1

N

N∑
n=1

cnxn = 0,

with convergence taking place in the weak topology.
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Weak Mixing van der Corput’s Difference Theorem

MvdC3: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

1

H

H∑
h=1

∣∣∣∣∣ lim
N→∞

1

N

∞∑
n=1

〈xn+h, xn〉

∣∣∣∣∣ = 0,

then (xn)∞n=1 is a nearly weakly mixing sequence.

Remark: Let H′, 〈·, ·, 〉H′, and U be as before. The given hypothesis implies

0 = lim
H→∞

1

H

H∑
h=1

|〈Uh(xn)∞n=1, (xn)∞n=1〉H′|,

(cf. lim
H→∞

1

H

H∑
h=1

|µ(A ∩ T−nA)− µ(A)2| = 0 ∀ A ∈ B)

verifies that {Uh(xn)∞n=1}∞h=0 is a weakly mixing sequence in H′. It follows that

lim
H→∞

1

H

H∑
h=1

|〈Uh(xn)∞n=1, (yn)∞n=1〉H′| = 0 ∀ (yn)∞n=1 ∈ H′.
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Theorem: Let (xn)∞n=1 ⊆ H be a nearly weakly mixing sequence, (rn)∞n=1 ⊆ H
a compact sequence, and (cn)∞n=1 ⊆ C a compact sequence. We have

lim
N→∞

1

N

N∑
n=1

〈xn, rn〉 = 0

and

lim
N→∞

|| 1
N

N∑
n=1

cnxn|| = 0.

Corollary: For any measure preserving system (X,B, µ, T ), any ` ∈ N, and
any compact µ-preserving transformation S : X → X , there exists n ∈ N for
which

µ(S−nA ∩ T−nA ∩ T−2nA ∩ · ∩ T−`nA) > 0

McGill University Descriptive Dynamics and Combinatorics Seminar



Sohail Farhangi Slide 17/33

Ergodic van der Corput’s Difference Theorem

MvdC4: If (xn)∞n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

lim
N→∞

∣∣∣∣∣∣∣∣
1

NH

∑
1≤h≤H
1≤n≤N

〈xn+h, xn〉

∣∣∣∣∣∣∣∣ = 0,

then (xn)∞n=1 is a completely ergodic sequence.

Remark: Let H′, 〈·, ·, 〉H′, and U be as before. The given hypothesis implies

0 = lim
h→∞
〈Uh(xn)∞n=1, (xn)∞n=1〉H′,

(cf. lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA) = µ(A)2 ∀ A ∈ B)

verifies that {Uh(xn)∞n=1}∞h=0 is a ergodic sequence in H′. It follows that
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lim
H→∞

1

H

H∑
h=1

〈Uh(xn)∞n=1, (yn)∞n=1〉H′ = 0 ∀ (yn)∞n=1 ∈ H′.
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Theorem: Let (xn)∞n=1 ⊆ H be a completely ergodic sequence, (rn)∞n=1 ⊆ H
a invariant sequence, and (cn)∞n=1 ⊆ C a invariant sequence. We have

lim
N→∞

1

N

N∑
n=1

〈xn, rn〉 = 0

and

lim
N→∞

|| 1
N

N∑
n=1

cnxn|| = 0.
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Mixing and Uniform Distribution

Definition: Let us recall that C is a Hilbert space when equipped with the
inner product 〈c1, c2〉 = c1c2. By abuse of notation, let C0(T) denote the
set of continuous complex valued functions f on T with

∫
T fdm = 0. Let

(xn)∞n=1 ⊆ Td be a sequence.

(1) (xn)∞n=1 is a e-sequence if for every f ∈ T, f (xn))∞n=1 is a completely
ergodic sequence.

(2) (xn)∞n=1 is a wm-sequence if for every f ∈ C0(T), (f (xn))∞n=1 is a nearly
weakly mixing sequence.

(3) (xn)∞n=1 is a mm-sequence if for every f ∈ C0(T), (f (xn))∞n=1 is a nearly
mildly mixing sequence.

(4) (xn)∞n=1 is a sm-sequence if for every f ∈ C0(T), (f (xn))∞n=1 is a nearly
strongly mixing sequence.

(5) (xn)∞n=1 is a o-sequence if for every f ∈ C0(T), (f (xn))∞n=1 is a nearly
orthogonal sequence.
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Notions Complementary to Mixing

Let A := (nk)
∞
k=1 ⊆ N have positive lower natural density.

(1) A is invariant if d(A ∩ (A− 1)) = 0.

(2) A is compact if (1A(n))∞n=1 is a compact sequence of complex numbers.

(3) A is rigid if (1A(n))∞n=1 is a rigid sequence of complex numbers.

(4) A has zero-entropy if (1A(n))∞n=1 is a zero-entropy sequence of complex
numbers.
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A Consequence of the Pointwise Ergodic Theorem

Definition: (xn)∞n=1 ⊆ [0, 1]d is totally uniformly distributed if for any
a, b ∈ N the sequence (xan+b)

∞
n=1 is totally uniformly distributed.

Fact: If X := ([0, 1]d,B,m, T ) is an ergodic m.p.s. then for Lebesgue a.e.
x ∈ [0, 1]d, the sequence (T nx)∞n=1 is uniformly distributed. If X is totally
ergodic, then for Lebesgue a.e. x ∈ [0, 1]d, the sequence (T nx)∞n=1 is totally
uniformly distributed.

Remark: The points x ∈ [0, 1] for which the fact holds are precisely that x
that are generic for T .
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The Consequence of Higher Order Pointwise Ergodic
Theorems

Theorem: Let X := ([0, 1]d,B,m, T ) be an ergodic m.p.s. and let x ∈ [0, 1]d

be a generic point for T .
(1) If X is weakly mixing, then (T nx)∞n=1 is a wm-sequence.

(1.5) If X is mildly mixing, then (T nx)∞n=1 is a mm-sequence.

(2) If X is strongly mixing, then (T nx)∞n=1 is a sm-sequence.

(3) (T nx)∞n=1 is not an o-sequence.
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Discrepancy

Given a sequence (xn)Nn=1 ⊆ [0, 1]d, the discrepancy of (xn)∞n=1 ⊆ [0, 1]d is
denoted by DN((xn)Nn=1) and given by

DN((xn)Nn=1) = sup
B∈R

∣∣∣∣ 1

N
|{1 ≤ n ≤ N | xn ∈ B}| −md(B)

∣∣∣∣ , (1)

where R denotes the collection of all rectangular prisms contained in [0, 1]d.
For an infinite sequence (xn)∞n=1 ⊆ [0, 1]d, we let

D((xn)∞n=1) = lim
N→∞

DN((xn)Nn=1), and we let (2)

D((xn)∞n=1, (Nq)
∞
q=1) = lim

q→∞
DNq((xn)

Nq
n=1), (3)

provided that the limit exists.
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Ergodic van der Corput

Theorem: {x(n,m)}(n,m)∈N2 ⊆ T is uniformly distributed if and only if for
every k ∈ N, we have

lim
K→∞

sup
N,M≥K

| 1

NM

∑
1≤n≤N
1≤m≤M

e2πikxn,m| = 0. (4)

Theorem: If (xn)∞n=1 ⊆ T is such that (xn+h − xn)(n,h)∈N2 is uniformly dis-
tributed, then (xn)∞n=1 is also uniformly distributed.

’Theorem’: If (xn)∞n=1 ⊆ T is such that (xn+h − xn)(n,h)∈N2 is uniformly
distributed, then (xnk)

∞
k=1 is uniformly distributed for any invariant sequence

(nk)
∞
k=1.
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Weakly Mixing van der Corput

Theorem: Let (xn)∞n=1 ⊆ [0, 1] be a sequence for which

lim
H→∞

1

H

H∑
h=1

D((xn+h − xn)∞n=1) = 0. (5)

Then (xn)∞n=1 is a wm-sequence.

Theorem: (xn)∞n=1 ⊆ [0, 1]d is a wm-sequence if and only if (xnk)
∞
k=1 is uni-

formly distributed whenever (nk)
∞
k=1 ⊆ N is compact.
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Mildly Mixing van der Corput

Theorem: Let (xn)∞n=1 ⊆ [0, 1] be a sequence for which

IP∗ − lim
h→∞

D((xn+h − xn)∞n=1) = 0. (6)

Then (xn)∞n=1 is a mm-sequence.

’Theorem’: (xn)∞n=1 ⊆ [0, 1]d is a mm-sequence if and only if (xnk)
∞
k=1 is

uniformly distributed whenever (nk)
∞
k=1 ⊆ N is rigid.
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Strongly Mixing van der Corput

Theorem: Let (xn)∞n=1 ⊆ [0, 1] be a sequence for which

lim
h→∞

D((xn+h − xn)∞n=1) = 0. (7)

Then (xn)∞n=1 is a sm-sequence.
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Nearly Orthogonal van der Corput and A Counter
Example

Theorem: (xn)∞n=1 ⊆ [0, 1]d is an o-sequence if and only if for each h ∈ N
(xn, xn+h)

∞
n=1 ⊆ [0, 1]2d is uniformly distributed.

Example: Let α ∈ R \ Q be artbirary and consider the sequence (xn)∞n=1

defined by xn = n2α (mod 1) if n is odd and xn = 2(n− 1)2α (mod 1) if n is
even.

(1) (xn)∞n=1 is not an o-sequence.

(2) For each h ∈ N the sequence (xn+h − xn)∞n=1 is uniformly distributed.
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A Conjecture

Conjecture: If (xn)∞n=1 ⊆ [0, 1]d is such that (xn+h − xn)∞n=1 is uniformly
distributed for every h ∈ N, then (xnk)

∞
k=1 is uniformly distribtued for any

zero-entropy sequence (nk)
∞
k=1.
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If and only If Weakly Mixing van der Corput

Theorem: For (xn)∞n=1 ⊆ [0, 1]d1 the following are equivalent:
(1) (xn)∞n=1 is a wm-sequence.

(2) For any uniformly distributed (yn)∞n=1 ⊆ [0, 1]d2 and (Nq)
∞
q=1 ⊆ N for

which ({(xn, yn+h)∞n=1}∞h=1, (Nq)
∞
q=1) is a permissible pair, we have

lim
H→∞

1

H

H∑
h=1

D((xn, yn+h)
∞
n=1, (Nq)

∞
q=1) = 0. (8)

(3) For any (Nq)
∞
q=1 ⊆ N for which ({(xn, xn+h)∞n=1}∞h=1, (Nq)

∞
q=1) is a per-

missible pair, we have

lim
H→∞

1

H

H∑
h=1

D((xn, xn+h)
∞
n=1, (Nq)

∞
q=1) = 0. (9)

(4) For any (Nq)
∞
q=1 ⊆ N that makes ({(xn+h− xn)∞n=1}∞h=1, (Nq)

∞
q=1)) a per-

missible pair, we have

lim
H→∞

1

H

H∑
h=1

D((xn+h − xn)∞n=1, (Nq)
∞
q=1) = 0. (10)



If and only If Mildly Mixing van der Corput

’Theorem’: For (xn)∞n=1 ⊆ [0, 1]d1 the following are equivalent:
(1) (xn)∞n=1 is a mm-sequence.

(2) For any uniformly distributed (yn)∞n=1 ⊆ [0, 1]d2 and (Nq)
∞
q=1 ⊆ N for

which ({(xn, yn+h)∞n=1}∞h=1, (Nq)
∞
q=1) is a permissible pair, we have

IP∗ − lim
h→∞

D((xn, yn+h)
∞
n=1, (Nq)

∞
q=1) = 0. (11)

(3) For any (Nq)
∞
q=1 ⊆ N for which ({(xn, xn+h)∞n=1}∞h=1, (Nq)

∞
q=1) is a per-

missible pair, we have

IP∗ − lim
h→∞

D((xn, xn+h)
∞
n=1, (Nq)

∞
q=1) = 0. (12)

(4) For any (Nq)
∞
q=1 ⊆ N that makes (({(xn+h − xn)∞n=1}∞h=1, (Nq)

∞
q=1)) a

permissible pair, we have

IP∗ − lim
h→∞

D((xn+h − xn)∞n=1, (Nq)
∞
q=1) = 0. (13)



If and only If Strongly Mixing van der Corput

Theorem: For (xn)∞n=1 ⊆ [0, 1]d1 the following are equivalent:
(1) (xn)∞n=1 is a sm-sequence.

(2) For any uniformly distributed (yn)∞n=1 ⊆ [0, 1]d2 and (Nq)
∞
q=1 ⊆ N for

which ({(xn, yn+h)∞n=1}∞h=1, (Nq)
∞
q=1) is a permissible pair, we have

lim
h→∞

D((xn, yn+h)
∞
n=1, (Nq)

∞
q=1) = 0. (14)

(3) For any (Nq)
∞
q=1 ⊆ N for which ({(xn, xn+h)∞n=1}∞h=1, (Nq)

∞
q=1) is a per-

missible pair, we have

lim
h→∞

D((xn, xn+h)
∞
n=1, (Nq)

∞
q=1) = 0. (15)

(4) For any (Nq)
∞
q=1 ⊆ N that makes (({(xn+h − xn)∞n=1}∞h=1, (Nq)

∞
q=1)) a

permissible pair, we have

lim
h→∞

D((xn+h − xn)∞n=1, (Nq)
∞
q=1) = 0. (16)


